

English

VISION:elite* 2M Pixel B/W Gig-E Camera VCC-G60U21GE

Product Specification & Operational Manual

CIS Corporation

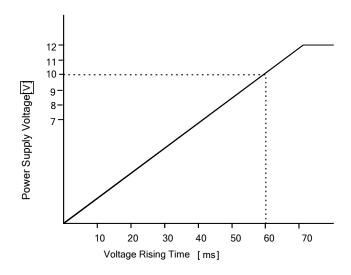
Table of Contents

Ι.	SCC	ppe of Application	3
2.	Har	ndling Precautions	3
3.		oduct Outline	
4.	Spe	ecification	5
4	l.1.	General Specification	5
4	l.2.	Camera Output Signal Specification	7
4	l.3.	CCD Spectral Response (Representative Value)	8
4	l.4.	Image output format (Coyote Application Setting)	8
5.	Fur	nction Settings	9
6.	Ext	ernal Connector Pin Assignment	.11
6	5.1.	12 pins Circular Connector HR10-10R-12PA (HIROSE)	.11
6	5.2.	RJ-45 Gigabit Ethernet Connector MOD-YSJ88DA03C-CN+ (HONDA TSUSHIN KOGYO CO., LTD)	.12
7.	Tim	ning Chart	.13
7	' .1.	Horizontal Synchronous Signals Timing	.13
7	7.2.	Full Frame Scan Mode Timing	.13
7	7 .3.	Standard Trigger Mode Timing	.14
7	' .4.	Pulse Width Trigger Timing	.15
7	' .5.	Internal Trigger Timing	.16
8.	Par	tial Scan Mode Details	.17
9.	Rer	mote Interface Function	.18
10.		nitial Settings	
11.	CC	CD Optical Axis Accuracy	.20
12.	Di	imensions	.21
13.	Ca	ases for Indemnity (Limited Warranty)	.23
14.	CC	CD Pixel Defect	.24
15.	Pr	oduct Support	24

Scope of Application

This is to describe VCC-G60U21GE, 2M pixels Gig-E B/W CCD Camera. All specifications contained herein are subject to change without prior notice. Reproduction in whole or in part is prohibited.

2. Handling Precautions


The camera must not be used for any nuclear equipments or aerospace equipments with which mechanical failure or malfunction could result in serious bodily injury or loss of human life. Our warranty does not apply to damages or defects caused by irregular and/or abnormal use of the product.

Please observe all warnings and cautions stated below.

Our warranty does not apply to damages or malfunctions caused by neglecting these precautions.

- Do not use or store the camera in the following extreme conditions:
 - > Extremely dusty or humid places.
 - \triangleright Extremely hot or cold places (operating temperature -5°C to +40°C)
 - Close to generators of powerful electromagnetic radiation such as radio or TV transmitters.
 - Places subject to fluorescent light reflections.
 - Places subject to unstable (flickering, etc.) lighting conditions.
 - Places subject to strong vibration.
- Do not apply excessive force or static electricity that could damage the camera.
- Do not shoot direct images that are extremely bright (e.g., light source, sun, etc.), and when camera is not in use, put the lens cap on.
- Follow the instructions in Chapter 6, "External connector pin assignment" for connecting the camera.
 Improper connection may cause damages not only to the camera but also to the connected devices.
- Confirm the mutual ground potential carefully and then connect the camera to monitors or computers.
 AC leaks from the connected devices may cause damages or destroy the camera.
- Do not apply excessive voltage. (Use only the specified voltage.) Unstable or improper power supply voltage may cause damages or malfunction of the camera.
- The voltage ripple of camera power DC +12V \pm 10% shall be within \pm 50mV. Improper power supply voltage may cause noises on the video signals.

 The rising time of camera power supply voltage shall be less than +10V, Max 60ms. Please avoide noises like chattering when rising.

In case of abnormal operation, contact the distributor from whom you purchased the product.

3. Product Outline

VCC-G60U21GE is a Gigabit Ethernet interfaced, high-resolution industrial black and white video camera module utilizing a 1/1.8 type PS IT CCD. 2M pixels CCD image sensor with on-chip micro-lenses realizes high sensitivity and high resolution. At Full Frame Scan Mode, entire pixels can be read out within approx. 1/30s.

_			
E_{A}	\sim t		\sim
г	at	ш	_,

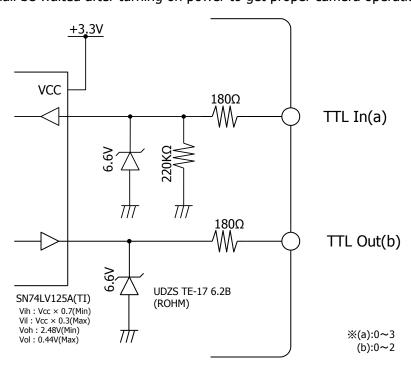
- ☐ High speed communication, maximum 108MB/s. (Comform to 1000BASE-T)
- ☐ The maximum transmission distance is approx. 100m with cable more than CAT5e.
- ☐ Camera settings can be set via LAN.
- ☐ Software trigger input via LAN or hardware trigger input via 12pin connector at rear is selectable.
- \square Shutter speed can be set from 1/30sec \sim 1/54,000sec by 1H.
- At partial scan mode, both capturing start position and capturing width can be set by 3H.

Bundled Items

- □ Camera
- ☐ iPORT Software Development Kit 2.4.1 build 921. ※
- ☐ Gig-E Camera Control Software (CamCtlSetup.exe). ※
- ☐ Start up manual ※
- Please ask for the details or download it from our web.

4. Specification

4.1. General Specification


Item	Specification					
Pickup device	Device Type	1/1.8 type Interline Transfer B/W CCD, Sony ICX274AL				
	Effective Pixel Number	1628 (H) x 1236 (V)				
	Unit Cell Size	4.40 μ m (H) x 4.40 μ m (V)				
	Chip Size	8.50mm (H) x 6.80mm (V)				
Videooutput frequency	Pixel Clock	72 MHz				
	Horizontal Frequency	37.5000kHz Pixel Clock: 1920CLK				
	Vertical Frequency	Full Frame Scan Mode: 1252lines, approx 29.952Hz				
Sync. system	Internal Sync. System					
Video output standard	Gigabit Ethernet (Comfo	orm to 1000BASE-T) Trasferring speed: 108MB/s (max)				
Resolution	1200 TV lines					
Resolving power	8bit / 10bit					
Sensitivity	F 5.6 2000 lx (Shutter speed 1/30s, Gain 0dB)					
Minimum illumination	F 1.4 2.0 lx (Shutter speed 1/30s, Gain Max +12dB)					
Dust or stains in	No dust or stain shall be detected on the testing screen with setting the camera					
optical system	aperture at F16.					
Power requirements	DC +12V \pm 10% (Max	voltage not to exceed +15V)				
Power consumption	5.5 W (At DC +12V IN, normal mode, full frame scan mode or partial scan					
	mode.)					
Dimension	Refer to overall dimension drawing (Clause 12)					
	55mm x 55mm x 60mm (excluding projection)					
Mass	Approx. 190 g					
Lens mount	C mount (Refer to overall dimension drawing)					
Optical axis accuracy	Refer to drawing for CCD Optical Axis Accuracy (Clause 11)					
Gain variable range	0∼12dB					
Shutter speed	1/30s (Off) ∼1/54000s					
variable range						
Trigger shutter mode	 Standard Trigger Mod 	e · Pulse Width Trigger Mode · Internal Trigger Mode				

Item		Specification					
Safety/Quality	UL: Conform	onform to UL Standard including materials and others.					
standards	RoHS: Conforn	HS: Conform to RoHS					
CE: EN 55022:2006 (Class A) for Emission							
	ity						
	FCC: TBD						
		Acceleration	98 m/s ² (10.0G)				
	\ r: \	Frequency	20∼200 Hz				
D b 32b .	Vibration	Direction	XYZ 3 directions				
Durability		Testing time	120 min for each direction				
	Shock	No mulfunction shall be occurred with 980m/s ² (100G) for					
		\pm X, \pm Y, and \pm Z, 6 directions. (without package)					
	Temperature	Performance guaranteed temperature: $0^{\circ}\text{C} \sim +40^{\circ}\text{C}$					
		Camera operation guaranteed temeprature: -5 $^{\circ}$ C $^{\circ}$ +45 $^{\circ}$ C					
		lpha All the specifications specified in this manual is guaranteed					
Operation environment		under performance guaranteed temperature.					
		*All the camera functions operate normally under operation					
		guaranteed temperature					
	Humidity	RH 20 \sim 80% with no condensation					
Chausas anvivament	Temperature	-25°C ∼ +60°C					
Storage environment	Humidity	RH 20~80% with no condensation					
	LAN Card	Intel PRO/1000 series	3				
	LAN Cable	MOD-YSP-A1AS-SP series (Honda Tsushin Kogyo)					
Recommended System	LAN Cable	MV series (CEI)					
	OS	Windows XP, Windows VISTA					
	Memory	Over 512 MB (over 1GB recommeded)					

4.2. Camera Output Signal Specification

	Item	Specification				
Video output data	Video out	1642 (H) x 1224	(V)	At Full Frame Scan Mode		
	LVAL output	LVTTL (3.3V Out	out)	HR10-10R-12PA		
	FVAL output	LVTTL (3.3V Outp	out)	※ Output pin assignment is		
Sync. Signal	DVAL output	LVTTL (3.3V Out	out)	set via iPort SDK. Please		
I/O				refer to our VCC-G60/F60		
	SP (Exposure Signal)	LVTTL (3.3V Outp	out)	GE series startup manual,		
				section 5.7. Trigger Mode.		
	Polarity	POSI/NEGA Sele	ectable			
Tuissau innut	Trigger Pulse width	Min. over 2 HD ~	Max. under 2	504 HD		
Trigger input	Hardware Trigger input	LVTTL (5.0V Tole	erant)	HR10-10R-12PA		
	Software Trigger input			RJ-45		
	White Clip Level	Digital 8bit	: FFh			
Video output	Setup Level	Digital 8bit : 08h				
signal	Dark Shading	Digital 8bit	: Under 08h fo	th for both horizontal and vertical		
			(Conditions: Ga	ain 0dB)		


5 secounds shall be waited after turning on power to get proper camera operation.

12 pins circular connector at rear GPIO interface

4.3. CCD Spectral Response (Representative Value)

* Lens charcteristics and luminous source charcteristics are not considered.

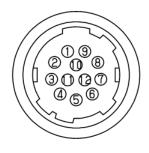
4.4. Image output format (Coyote Application Setting)

- · 1-Tap, Grayscale
- Area of interest Width: 1624 Height: 1224 Offset X:0 Offset Y:19

5. Function Settings

Camera functions can be set with serial communications.

Function	Address	Data				
		0:	0 dB: Analog Fixed Gain			
		1:	+3 dB: Analog Fixed Gain			
Gain	001	2:	+6 dB: Analog Fixed Gain			
		3:	+12 dB: Analog Gain (+6dB) + Digital Gain (+6dB)			
		4:	Manual Gain (Refer to Address 005 and 006)			
		0:	1/30s(Off)			
		1:	1/30s			
		2:	1/60s			
		3:	1/90s			
		4:	1/120s			
		5:	1/150s			
		6:	1/200s			
		7:	1/250s			
E-Shutter	002	8:	1/500s			
		9:	1/750s			
		10:	1/1000s			
		11:	1/1500s			
		12:	1/2500s			
		13:	1/5000s			
		14:	1/10000s			
		15:	1/54000s			
		16:	Manual Shutter (Refer to Address 009 & 010)			
		0:	Normal Mode (Trigger Mode Off)			
		1:	Standard Trigger Mode (Shutter speed can be set with address 002.)			
Trigger Mode	004	2:	Pulse Width Trigger Mode (Shutter speed can be set with trigger pulse width.)			
Trigger Plode	004		Internal Trigger Mode (Generates trigger signals in the camera.)			
		3:	%Trigger Cycle: Address 240, 241, 242, 243, 244, and 245.			
			Start/Stop: Address 246			
			0: $0dB\sim512$: over $+12dB$ (Log Linear)			
Manual Analog Gain	005&006	0∼512:	With 10 bit data, 2LSB is invalid.			
			※ Set the address 001 data to 004.			
			1/30s (Off)~1/54000s			
			Set the address 002 data to 016.			
Manual Shutter Control	009&010	0~1251:	Address 009 MSB and address 010 LSB makes total 16 bit.			
			Shutter speed = (1251-(009&010)) x 26.27 μ s + 18.53 μ s			
			Max data = 1251			
Trigger Polarity	011	0:	Positive Input			
55		1:	Negative Input			
Output Data Select	013	0:	8bit Output Data			
		1:	10bit Output Data			

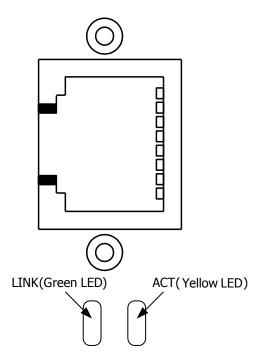

Function	Address	Data				
Carrena Mada	014	0:	Gamma Off (1.0)			
Gamma Mode	014	1:	Gamma On (Option)			
Double Cook Made	015	0:	Full Frame Scan Mode			
Partial Scan Mode	015	1:	Partial Scan Mode			
			Set the address 015 data to 001.			
Partial Scan Start Position	016&017	0∼ 4 07:	Address 016 MSB and address 017 LSB makes total 16 bit.			
Partial Scall Start Position	0100017	0° °407.	Start Position: 3 H/step Min Data: 0 (0H)/Max Data: 407 (1221 H)			
			Start Position (016&017)+ Effective Line (019&020) <= 407			
			Set the address 015 data to 001.			
Partial Scan Effective Line	019&020	0~407:	Address 019 MSB and address 020 LSB makes total 16 bit.			
raitiai Scail Lifective Life	0190020		Effective Line: 3 H /step Min Data: 0 (3 H)/Max Data: 407 (1224 H)			
			Start Position (016&017)+ Effective Line (019&020) <= 407			
			Read Only			
Partial Scan Total Line	021&022	0~1251:	Total line number at Partial Scan Mode or Full Frame Scan Mode minus 1			
			is set			
		Trigger Pe	eriod 1 = (Address 240 $\lceil MSB \rfloor$ - 241 – 242 $\lceil LSB \rfloor$ +1) x t			
Internal Trigger Period 1	240~242	t. = (1920	$0/72M$) x 19 = 506.667 μ s			
		(240, 241	, and 242) :1 (Min) \sim 131071 (Max)			
		Trigger Period 2 = (Address 243 $\lceil MSB \rfloor - 244 - 245 \lceil LSB \rfloor + 1) x t$				
Internal Trigger Period 2	243~245	t. = (1920	$0/72M$) x 19 = 506.667 μ s			
		(243, 244	, and 245) :1 (Min) \sim 131071 (Max)			
		0:	Internal Trigger Start			
Internal Trigger Start/Stop	246	1:	Internal Trigger Stop			
		*Please	**Please set the data of address 004 to be 003.			
Data Save	or 053 to save the data in EEP-ROM.					

Note: When setting the data with 2 Byte, High Byte shall be set first, then Low Byte to the next. The camera rewrites the internal resister when receiving Low Byte.

6. External Connector Pin Assignment

6.1. 12 pins Circular Connector HR10-10R-12PA (HIROSE)

	•	-
Pin		Signals which can be controlled by GigE
No.		Camera Control Software
1	GND	
2	Power In DC +12V	
3	TTL In3	Trigger Input
	(LVTTL Input 5V Tolerant)	
4	TTL Out2	LVAL, FVAL, DVAL ,SP(Exposure) Output
	(LVTTL 3.3V Output)	
5	GND	
6	TTL In2	Trigger Input
	(LVTTL input 5V Tolerant)	
7	TTL Out1	LVAL, FVAL, DVAL ,SP(Exposure) Output
	(LVTTL 3.3V Output)	
8	TTL In1	Trigger Input
	(LVTTL input 5V Tolerant)	
9	TTL Out0	LVAL, FVAL, DVAL ,SP(Exposure) Output
	(LVTTL 3.3V Output)	
10	TTL In0	Trigger Input
	(LVTTL Input 5V Tolerant)	
11	NC	
12	NC	


TTL In(a) a:0 \sim 3 · · · Trigger Input etc.

TTL Out(b) b:0~2 · · · LVAL, FVAL, DVAL, SP, Pulse Generator etc.

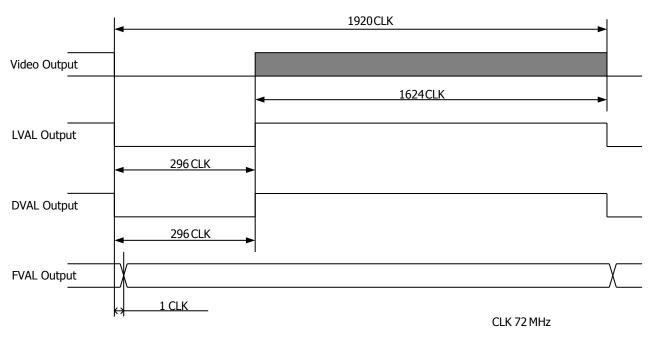
※ Pin assignment and functions can be set arbitrarily via iPORT software.

Please refer to iPORT.Software.Coyote.pdf in \forall Program Files \forall Pleora Technologies Inc \forall iPORT Software \forall Documentation.

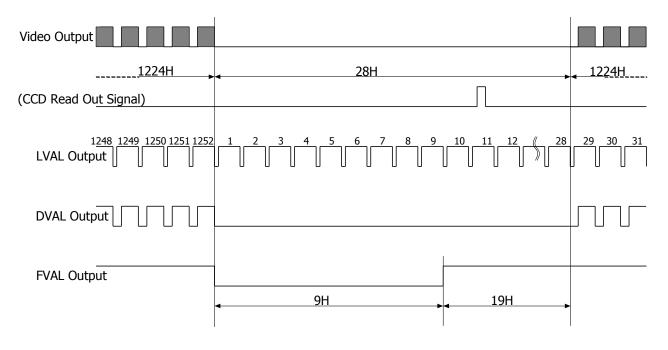
6.2. RJ-45 Gigabit Ethernet Connector MOD-YSJ88DA03C-CN+ (HONDA TSUSHIN KOGYO CO., LTD)

LINK LED: Lighting-off · · · Unconnected to LAN

Lighting-on · · · Connected to LAN

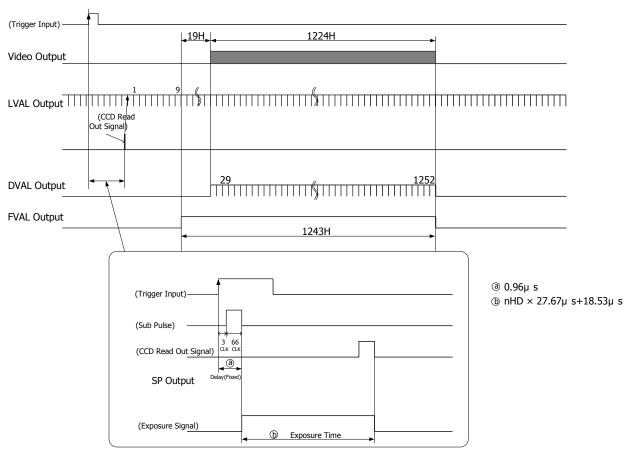

Blinking · · · Transmitting the data

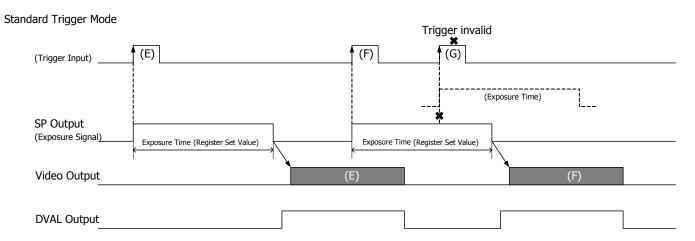
ACT LED: Lighting-off · · · · Unconnected or connected with 10Mbps/100Mbps


Lighting-on · · · Connected with 1000Mbps

7. Timing Chart

7.1. Horizontal Synchronous Signals Timing

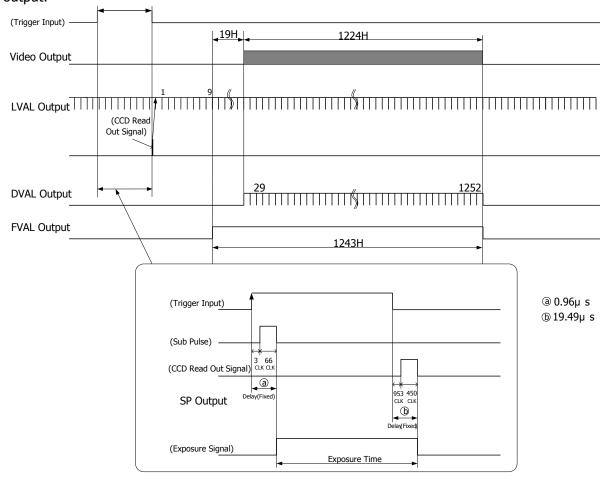

7.2. Full Frame Scan Mode Timing

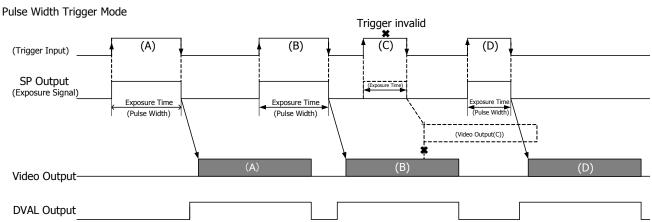


Total=1252H

7.3. Standard Trigger Mode Timing

- ☐ Trigger operation is CLK sync, V-Sync Reset.
 - Delay time, from detecting the trigger edge to starting exposure, is 0.96 μ s.
- ☐ Trigger input can be accepted even when the camera is outputting video signals. However, a shutter timing, to start the next video output before completion of transferring video output for the prior signals, can not be worked. To input trigger signals when the camera is outputting video signals for the prior signals, it shall be synchronized with the down edge of camera LVAL output.
- ☐ Trigger input during the execution of exposure (exposure time) shall be ignored. (Refer to the "G" below.)

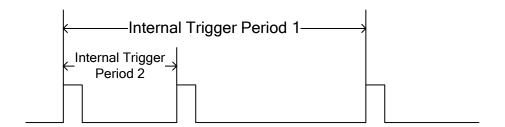



7.4. Pulse Width Trigger Timing

☐ Trigger operation is CLK sync, V-Sync Reset.

Delay time, from detecting the trigger edge to starting exposure, is 0.96 μ s. Delay time, from detecting the trigger edge to completion of exposure, is 19.46 μ s.

☐ Trigger input can be accepted even when the camera is outputting video signals. However, a shutter timing, to start the next video output before completion of transferring video output for the prior signals, can not be worked. Please refer to the "C" below. To input trigger signals when the camera is outputting video signals for the prior signals, it shall be synchronized with the down edge of camera LVAL output.



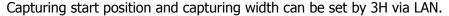
7.5. Internal Trigger Timing

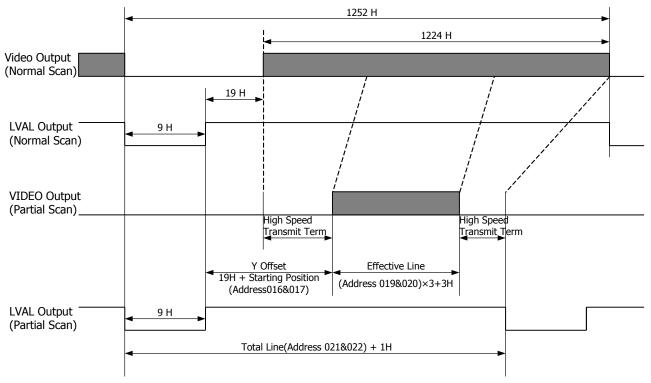
 \square With this mode, trigger signals can be generated in the camera.

Trigger cycle can be changed by the register settings.

Internal Trigger Cycle 1=(Address240[MSB] · 241 · 242[LSB]+1)×t Internal Trigger Cycle 2=(Address243[MSB] · 244 · 245[LSB]+1)×t

 $t=(1920/72M)\times19=506.667\mu s$ (240&241&242, 243&244&245)):1(Min)~131071(Max)


Internal Trigger Mode Address: 004 Data: 003


Internal Trigger Start/Stop Address: 246 Data: 000 Stop

001 Start

- ☐ Trigger Period 1> Trigger Period 2 (conditions to be met)
- ☐ Internal Trigger Period settings shall be set when it is under Stop conditions (Address: 246 Data: 000). If internal trigger period are set under Start conditions, trigger cycle right after changing the settings may not be reflected properly.
- ☐ Frame rate of VCC-G60U21GE is 30fps (33.333ms). Internal Trigger Period, longer than 33.333ms, should be set.

8. Partial Scan Mode Details

Reading out position register (Address 016 & 017): $0(0H) \sim 407(1221H)$ 3H/step Effective line register (Address 019 & 020): $0(3H) \sim 407(1224H)$ 3H/step Total line register (Address 021 & 022): $435H + (Effective line register \times 2) + 2 (Read Only)$

Note: Reading out position and effective line shall meet the following condition.

Reading out position register + Effective line register = < 407

Otherwise, the value, 407 – reading out position register, will be set to the effective line register.

<Example 1> Conditions: Reading out position register (Address 016 & 017) = 000

		, <u> </u>	,
Effective Line Register (Address 019&020)	Effective Lines	Total Line Register + 1H	Frame Rates
0	3 H	438 H	86 fps
	•		
159	480 H	756 H	50 fps ·
	•	•	•
255	768 H	948 H	40 fps
	•	•	•
341	1026 H	1120 H	33 fps
	•	•	•
407	1224	1252 H	30 fps

9. Remote Interface Function

Through LAN, the camera can be controlled.

(1) The settings for RS-232C

Baud rate : 9600bps
Data : 8bit
Stop bit : 1bit
Parity : None

XOn/XOff : Not controlled

(2) Control code

· The total control code is 14 bits, which conforms to ASCII code.

• The control code consists of camera No. process code, remote controller address, remote controller data, and CR. Execute Read/Write through PC, and the camera will reply the data.

1	2	3	4	5	6	7th Byte	8	9	10	11	12	13	14
Camera No. Process code		Remote controller		Remote controller data			<u>CR</u>						
							address						
000	0000	: fixe	ed			"R" Read mode	Please refer to the			000~25	55		0 Dh
						"W" Write mode	address table of						
						"C" Camera mode	Section 5. Function						
							Settings.						

Camera No. is fixed with 6 bite numerical strings, "000000".

Process code

Input any one of R, W, or C to the process code.

R (read mode) is to read the data of remote controller address.

Please be noted to set any dummy data (000 \sim 255) to 11th \sim 13th, since a command shall consists of 14 bytes.

W (write mode) is to write the data to the remote controller address.

Please be noted that the data cannot be saved into EEPROM of the camera.

(Reboot the camera, and the data is reset to the initial setting.)

To save the data into EEPROM, please refer to Section 5. Function Settings.

C is the code to send the data back from the camera.

Note: Do not set code C when sending the data from PC side.

Remote controller address

Note: Do not write the data into the address other than specified, since it may cause the damages or malfunction of the camera.

Remote controller data

Set the decimal number ($000\sim255$) for the remote controller data. Please be noted to set any dummy data at read control mode.

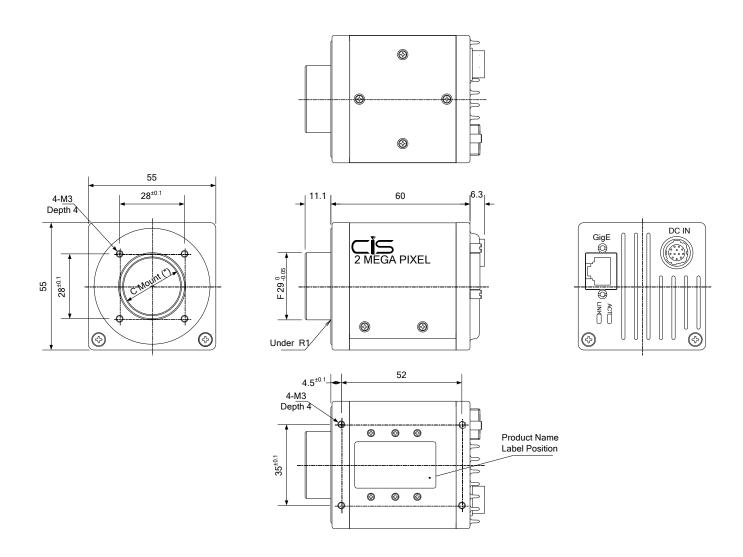
CR

Be sure to input "CR" to confirm the end of the command.

Note: When setting the data with 2 Byte, High Byte shall be set first, then Low Byte to the next. The camera rewrites the internal resister when receiving Low Byte.

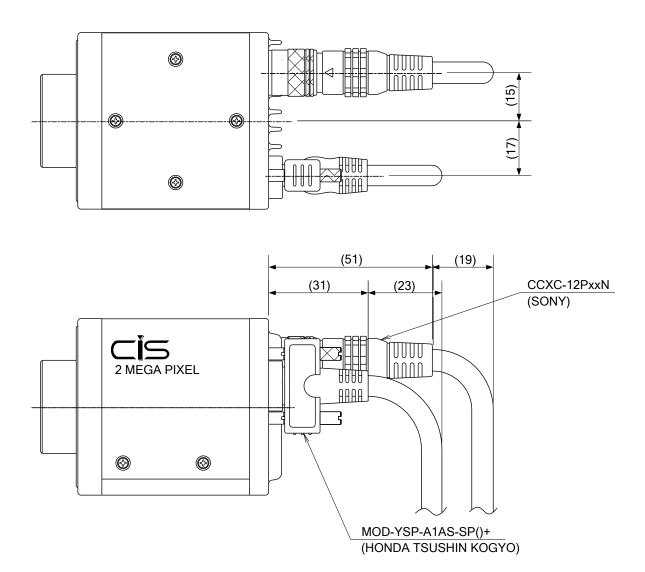
10. Initial Settings

Function	Address	Data
Gain	001	0: 0dB
E-Shutter	002	0: 1/30s (Off)
Trigger Mode	004	0: Normal Mode (Trigger Mode Off)
Trigger Polarity	011	0: Positive Input
Output Data Select	013	0: 8 bit Output Data
Partial Scan Mode	015	0: Full Frame Scan Mode
Partial Scan Total Lines	021 & 022	1251: Read Only


11. CCD Optical Axis Accuracy

*)Dimensions from datum plane A to the center of lens mount.

910-003-00-00 (Unit:mm)


12. Dimensions

^{*1)} C Mount screws comply with ANSI/ASME B1.1, 1-32UN(2B).

999-513-00-00(1/2) (Unit:mm)

^{*2)} Screw length from C mount lens surface shall be under 6mm. And protruding portion shall be lesss than 10mm.

Cable Reference Drawing

999-513-00-00(2/2) (Unit:mm)

13. Cases for Indemnity (Limited Warranty)

We shall be exempted from taking responsibility and held harmless for damage or losses incurred by the user in the following cases.

- ♦ In case damage or losses are caused by fire, earthquake, or other acts of God, acts by third party, deliberate or accidental misuse by the user, or use under extreme operating conditions.
- In case indirect, additional, consequential damages (loss of business interests, suspension of business activities) are incurred as result of malfunction or non-function of the equipment, we shall be exempted from responsibility for such damages.
- In case damage or losses are caused by failure to observe the information contained in the instructions in this product specification & operation manual.
- In case damage or losses are caused by use contrary to the instructions in this product specification & operation manual.
- In case damage or losses are caused by malfunction or other problems resulting from use of equipment or software that is not specified.
- In case damage or losses are caused by repair or modification conducted by the customer or any unauthorized third party (such as an unauthorized service representative).
- ♦ Expenses we bear on this product shall be limited to the individual price of the product.

14. CCD Pixel Defect

CIS compensates the noticeable CCD pixel defects found at the shipping inspection prior to our shipment. After our delivery however, CCD pixel defects might be noted with time of usage of the products.

Cause of the CCD pixel defects is the characteristic phenomenon of CCD itself and CIS is exempted from taking any responsibilities for them.

Should you have any questions on CCD pixel defects compensation, please contact us.

15. Product Support

When defects or malfunction of our products occur, and if you would like us to investigate on the cause and repair, please contact your distributors you purchased from to consult and coordinate.